Structural framework for the mechanism of archaeal exosomes in RNA processing.

نویسندگان

  • Katharina Büttner
  • Katja Wenig
  • Karl-Peter Hopfner
چکیده

Exosomes emerge as central 3'-->5' RNA processing and degradation machineries in eukaryotes and archaea. We determined crystal structures of two 230 kDa nine subunit archaeal exosome isoforms. Both exosome isoforms contain a hexameric ring of RNase phosphorolytic (PH) domain subunits with a central chamber. Tungstate soaks identified three phosphorolytic active sites in this processing chamber. A trimer of Csl4 or Rrp4 subunits forms a multidomain macromolecular interaction surface on the RNase-PH domain ring with central S1 domains and peripheral KH and zinc-ribbon domains. Structural and mutational analyses suggest that the S1 domains and a subsequent neck in the RNase-PH domain ring form an RNA entry pore to the processing chamber that only allows access of unstructured RNA. This structural framework can mechanistically unify observed features of exosomes, including processive degradation of unstructured RNA, the requirement for regulatory factors to degrade structured RNA, and left-over tails in rRNA trimming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays.

Eukaryotic RNA exosomes participate in 3' to 5'-processing and degradation of RNA in the nucleus and cytoplasm. RNA exosomes are multisubunit complexes composed of at least nine distinct proteins that form the exosome core. Although the eukaryotic exosome core shares structural and sequence similarity to phosphorolytic archaeal exosomes and bacterial PNPase, the eukaryotic exosome core has dive...

متن کامل

Crystal Structure of a 9-Subunit Archaeal Exosome in Pre-Catalytic States of the Phosphorolytic Reaction

The RNA exosome is an important protein complex that functions in the 3' processing and degradation of RNA in archaeal and eukaryotic organisms. The archaeal exosome is functionally similar to bacterial polynucleotide phosphorylase (PNPase) and RNase PH enzymes as it uses inorganic phosphate (Pi) to processively cleave RNA substrates releasing nucleoside diphosphates. To shed light on the mecha...

متن کامل

Quantitative analysis of processive RNA degradation by the archaeal RNA exosome

RNA exosomes are large multisubunit assemblies involved in controlled RNA processing. The archaeal exosome possesses a heterohexameric processing chamber with three RNase-PH-like active sites, capped by Rrp4- or Csl4-type subunits containing RNA-binding domains. RNA degradation by RNA exosomes has not been studied in a quantitative manner because of the complex kinetics involved, and exosome fe...

متن کامل

Lessons from structural and biochemical studies on the archaeal exosome.

The RNA exosome is a multisubunit exonuclease involved in numerous RNA maturation and degradation processes. Exosomes are found in eukaryotes and archaea and are related to bacterial polynucleotide phosphorylates. Over the past years structural and biochemical analysis revealed that archaeal exosomes have a large processing chamber with three phosphorolytic active sites that degrade RNA in the ...

متن کامل

Crystal Structure of the S. solfataricus Archaeal Exosome Reveals Conformational Flexibility in the RNA-Binding Ring

BACKGROUND The exosome complex is an essential RNA 3'-end processing and degradation machinery. In archaeal organisms, the exosome consists of a catalytic ring and an RNA-binding ring, both of which were previously reported to assume three-fold symmetry. METHODOLOGY/PRINCIPAL FINDINGS Here we report an asymmetric 2.9 A Sulfolobus solfataricus archaeal exosome structure in which the three-fold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2005